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Abstract—Traditional web servers, file servers, and proxies
transfer files to clients using basic system calls such as UNIX’s
send/writev. However, these calls incur an overhead due to copy-
ing data between user space and kernel space. This can be avoided
in certain cases by utilizing UNIX’s zero-copy calls, e.g. splice
and sendfile. In this paper, we suggest two simple modifications
to make the use of sendfile method much more effective. We also
show how we can effectively use these modifications to increase
performance of existing web servers and proxies.
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I. INTRODUCTION

Traditional web servers used send/writev calls in order
to send data to a socket, which often incur the overhead
of unnecessary multiple copies and system calls. The most
common example where this copy can be avoided is when the
program has to send the content of a file to a network socket,
the sendfile system call was introduced to Linux in version
2.2[1] to avoid uncessary copying to user buffer in this case.
However, there are some aspects of current sendfile implemen-
tation which create difficulties for application programmers
to use it effectively. There have been other approaches to
reduce the overhead of multiple copies in kernel, such as
IOLite[2]; however these proposals are not widely accepted
by the developer community on the basis that they are too
kernel intrusive.

The limitations of the current Linux sendfile method, which
are described more thoroughly in section II-A, have also been
documented by web servers and proxies in recent past. For
instance, NginX, a popular web proxy, includes the following
comment in its code base: “we need to disable the use of
sendfile() if we use cyclic temp file...”, which is one of
the two major problems we address in our work. There are
several other use cases of our work, some which are discussed
thoroughly in section III.

Our goals are to provide enhancements to the current Linux
sendfile system call with minimal amounts of changes to
the Linux kernel, and minimal changes to applications which
choose to take advantage of our modifications. Moreover,
applications that use sendfile in its current form should not
be required to modify their code. The modifications were
implemented in linux kernel 3.6.4, another important goal we
heeded to was optimal performance. As we will see in section
III, in many cases we can get distinctly better download times
by using using the modifications and support we propose.

The rest of paper is organized as following: In the next
section, we will discuss the limitations of the current system
calls which provide zero-copy behavior in Linux. In section
II-B, we will discuss several approaches to resolve these
limitations and facilitate effective use of sendfile. In section
III, we discuss several use cases for our approach and the
results of applying our methodology to these use cases. As this

Fig. 1. This describes how DMA uses scatter-gather to allow sendfile() to
be a true zero-copy function. sk buff’s contain information about the packet
used to build headers, (such as packet size), and packet payloads reside in
the kernel buffer, both of which are on the host device (main memory). DMA
scatter-gather allows these noncontiguous blocks to be combined without use
of the CPU.

area has received a relatively little amount of attention from
the research community, there are many interesting avenues
for future work, which have been summarized in section IV.
Finally, we present our conclusions in section V.

II. ZERO-COPY

In traditional web servers and file servers, files were trans-
ferred using Linux’s send() and read() system calls. Under-
neath these system calls, the following steps must take place.

1) A Direct Memory Access (DMA) copy of data from
disk memory to a kernel buffer is performed.

2) The kernel buffer is now copied to another buffer which
lies in user space.

3) The data is copied from the user space buffer into the
kernel’s socket buffer (sk buff).

4) A DMA copy from the kernel’s socket buffer to the
Network Interface Card (NIC) is performed.

These memory copy operations would typically be repeated
many times during the transfer of a large file to a client, making
transfers of such large files inefficient.
The zero-copy paradigm was introduced as a solution to this
problem. Modern operating systems like Linux introduced im-
plementations of this paradigm, utilizing the power of modern
hardware to further reduce the number of excess copies made
during the transfer of a file. When Linux’s sendfile is called,
the following steps occur.

1) A DMA copy from disk memory to a kernel-level buffer
is performed.

2) Socket buffers are allocated, but not populated with
data.

3) Data is copied via DMA to the NIC using DMA scatter-

gather.
DMA scatter-gather, available in most modern hardware, al-
lows DMA to copy from multiple non-contiguous blocks of
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memory, as is described in Figure 1.
Because sendfile contains no redundant copies between kernel
and user space, we save on CPU cycles spent copying memory
between buffers, as all copying is now done by DMA. An
added advantage is that sendfile can aggregate several other
system calls, reducing the amount of time spent calling system
calls. Unfortunately, for older hardware which does not support
scatter-gather, our modifications to sendfile will not be helpful,
as in such cases the buffer contents sk buff data structures
cannot be allocated non-contiguously in memory, as in Figure
1, and hence there has to be seperate socket buffer.
Sendfile in Linux is implemented using the splice operation.
Splice is Linux‘s way of passing data between two arbitrary
points in memory within the kernel without copying data to
user space. When a call to sendfile is invoked, the processs in-
ternal pipe (splice pipe) is initialized with the starting memory
address of the pages of the file we are reading from and will
be copied to the NIC directly through DMA. This copying
process takes place in tcp sendpages() function inside the
kernel. tcp sendpages() allocates sk buff (socket buffers) data
structures and sets pointers in them to locations of the memory
we going to transmit. Since modern hardware supports DMA
scatter-gather it can copy TCP headers and data pointed by
sk buffs even if they are scattered around in physical memory
through DMA copy operation without ever copying them to a
separate kernel buffer.

A. Limitations of current Zero-Copy implementation in Unix

Unfortunately, sendfile(), in it’s current implementation,
suffers from several problems which hinder its usefulness.
The first is a race condition which allows the user to send
corrupted content if the user writes to the kernel buffer
immediately after a sendfile call. sendfile() provides no
straightforward API to avoid this race condition, so the only
current solution is to wait an “appropriate” amount of time
before rewriting the same portion of file.
The second aspect is sendfile() is that it blocks if the send
buffer is full, although if the scatter-gather dma is supported
by NIC, this blocking is just not needed.

1) Race Condition: As with other network write calls(e.g.
send and writev) in linux, a call to sendfile blocks when called
on blocking socket if the send buffer is not available. Also
these network write system calls, including sendfile, might
and in many cases do return before the data sent over TCP
by the method call has been acknowledged. These methods
return as soon as all data is written into the socket buffers
(sk buff) and is pushed to the TCP write queue, the TCP
engine can manage alone from that point on. In other words
at the time sendfile returns the last TCP send window is not
actually sent to the remote host but queued. In cases where
scatter-gather DMA is supported there is no seperate buffer
which holds these bytes, rather the buffers(sk buffs) just hold
pointers to the pages of OS buffer cache, where the contents
of file is located. This might lead to a race condition if we
modify the content of the file corresponding to the data in the
last TCP send window as soon as sendfile is returned. As a

result TCP engine may send newly written data to the remote
host instead of what we originally intended to send.

2) Blocking Behavior: As we stated in last paragraph the
sendfile call blocks if the last windows is not acknowledged,
this makes sense if the data is actually held in socket buffer.
Although in cases where the scatter-gather DMA is supported
and only pointers are set in the buffer cache, this blocking is
useless. We fixed this by just removing the code which leads
to this blocking behavior in the case that scatter-gather DMA
is supported. This blocking behaviour of sendfile call can hurt
the performance of the event based proxies and server, which
do not have different threads for each connection.

B. Possible Solutions

The race condition mentioned in last section can be solved
if user space application is able to know how many bytes of
the file has been received and acknowledged by the recipient.
Exposing that information will allow the application to update
that safe region of the file without affecting the area of the
file which is not yet acknowledged by the recipient. This is
especially important when operating on a cyclic file, this case
arises in the Nginx proxy described in section III-B. However
even with this support solving race conditions that may arise
due to multiple writers to the same file needs some application
level locking, we will address these issues later in section II-C.
We now look at the possible approaches, to be able to expose
to applications when the data o which sendfile was called has
been acknowledged.

1) Blocking Sendfile: One naive approach is to block the
sendfile call until the last byte of data it sent has been
acknowledged. There are several problems with approach the
most important one being, in event based proxy servers several
connections are handled by the same thread and thus blocking
this way will hurt a lot of other connections. This approach
will not be considered any further because it’s obviously
not a viable approach to use in the current scalable server
implementations.

2) Polling: There are multiple ways to monitor a set of file
descriptors. select and poll have been quite common in the
past, however on the Linux platform epoll is available to do
the same and is more scalable than these polling interfaces.
epoll is more efficient because application does not have to
pass the entire list of file descriptors every time an event is
signaled, epoll also does not traverse (in Kernel space) the
list of file descriptors to raise event. In addition epoll also
supports both edge triggered and level triggered events whereas
poll only supports level triggered events. These features make
epoll more efficient than traditional poll operation. However
on Linux platform epoll does not work for regular files, as
regular files do not have an event interface. But in this case
we are interested in events raised on a regular file descriptor
passed to the sendfile system call. To overcome this issue an
epoll interface has been implemented for regular files. On the
other hand standard epoll does not provide a straight-forward
way to send information with the event, which is not quite
desirable, as we need to inform the user space the number of



3

bytes the recipient has acknowledged so far with the event.
We use the u64 field of the union “epoll data”, to stuff the
file descriptor and the number of bytes. Although there are a
few limitations of this interface, we believe that in most of the
cases this simple approach is sufficient enough.

3) Signaling: Signals are software interrupts identified by a
number and contains a small amount of information associated
with it. Typically the kernel or an application raises signals to
notify an event to a user space application. Signals raised from
the user space are also routed to the target process via kernel,
but in this work we are only interested in signals generate from
the kernel. We did implement signaling to be able to expose
how much data has been acknowledged, but because it’s not
so easy to use it in event based proxy servers, we didn’t do
any experimentation with this.

C. A Concrete Example

Linux follows the advisory locking approach for concurrent
access to a file. The problem we are describing here is when
the kernel and applications access the same file a mechanism
is needed to synchronize. So we think the extra concurrency
due to multi-threading of user applications shall be handled
by application level synchronization mechanisms. In fact in
the current event based servers, these issues don’t practically
arise because they don’t spawn a thread for each connection.
In this we discuss a concrete example of how our approach
can be used in one practical situation where multi-threading
might be a problem.

We now discuss an efficient buffering scheme, which is
evaluated in section 5 on lighttpd server. The buffer in this
case is materialized by mmapping a temporary file of the size
of the buffer we need. Design of this server is simple, in an
event loop we have a nonblocking implementation of sendfile
with signal or epoll based event mechanism and a writer that
modifies the content of a cyclic memory buffer.

Assume that we do not have any information on number of
bytes acknowledged so far by the recipient in this case. The
worst case that can happen here is given below assuming we
have slow writer.

At state t1, sendfile has received TCP ACKs up to rth
byte of the file. Writer is writing bytes to the memory buffer
at position r+i. Writer in this case is updating the version v of
the buffer to v+1.

At state t2 sendfile passes the point the writer is currently
updating and starts sending the recipient old data from version
v.

It is now obvious that lack of synchronization is disastrous
to such applications. In case of single threaded application
we can just add the event each time we call a sendfile and
keep track of portions which are not safe to write into. Let
us now look at how our sendfile implementation augmented
with one additional piece of information “the number of bytes
acknowledged so far by the recipient could solve this issue in
case of multiple-threads.

Assume that the size of the cyclic memory buffer is B bytes
and we logically partition this buffer to n partition length of
each logical partition would then be B/n. To maintain the

state of each of these logical partitions we will use an array
of data structures that will contain the version number of each
partition and a binary state whether the partition has been
received an acknowledged by the recipient. The array would
like this.

V: 1 Ack: T Lock
V: 1 Ack: T Lock
V: 1 Ack: F Lock
V: 1 Ack: F Lock
V: 0 Ack: T Lock
V: 0 Ack: T Lock

Initially all the cells have a version number of 0 and false
value for Ack. Assume that sendfile starts sending data. Event
handler will update the state of Ack to true in the first cell of
the array if and only if it is notified that bytes up to or beyond
B/n are received and acknowledged by the recipient.

Sendfile in this case does not operate on the entire memory
buffer; it functions at partition granularity. Before calling
sendfile the value of Ack and the version should be checked,
if Ack is set to false and version number is not less than
the version number of previously sent partition then sendfile
should called as this is the new version of the buffer that has
not been sent to the recipient. In all other cases sendfile should
not be called, it could either be a partition, which has not
been fully acknowledged yet, or an already acknowledged old
version.

Writers should also perform similar checks before updating
the corresponding area of the buffer. It should only update
the memory area if and only if the value of Ack is T and
current version is higher than the version of the partition.
Also before updating the memory writer should increment
the version vector by one and set the value of Ack to false.
If something goes wrong writer should revert values to the
previous state before exiting.

Any update to values in the cells representing partitions
should be done after acquiring the mutex lock Lock corre-
sponding to that partition.

III. EXPERIMENTAL EVALUATIONS

As discussed later, there are cases where the lack of kernel
support for solving these race conditions pose performance
limitations on the applications.

A. Experimental setup

We compiled our custom implementation, which has the
support for sendfile event and also is non-blocking as stated
in section II-A2, on linux 3.6.4. The kernel was installed on a
virtual machine running on oracle virtual box 4.2.4. The clients
and servers were all connected through a virtual host-only
network, the measured throughput of the links was higher than
50MBPS. Before we actually start discussing the benchmarks
lets look at the gains of using sendfile over send. In this simple
experiment we just had server which sends a file to a client on
each request. From fig 2 we see that for very small files there
are no gains of sendfile, in fact it does get slow for very small
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Fig. 2. The variation of download times at client, with increase in file size
for sendfile based server and send based server. The server just mmaps the
file and sends it to the client by sendfile or send calls depending upon the
situation.

Fig. 3. The comparison of sendfile call times at server, with increase in
file size for blocking sendfile based server and non-blocking sendfile based
server. Note that Y-axis is in log scale, and hence the non-blocking sendfile
has essentially negligible call duration in comparison to the blocking case.

chunks due to some overheads (one example is, because DMA
is not on contiguous memory), but for larger chunks sendfile
is much better in terms of total time spent. Fig 3 shows the
sendfile call duration at client becomes almost negligible when
we use non-blocking sendfile(notice that the y axis is in log
scale for comparison).

B. Nginx Benchmark

As mentioned in section I, the Nginx proxy modules faces
the difficulty of race condition with cyclic temporary files and
has clearly commented about the difficulty. The proxy module
of Nginx writes the response to a memory buffer, and in case
of overflow it writes the response to a temp file[3]. To send
that file to a socket it uses sendfile, when ran on Linux. The
problem in this case is that they cannot use a cyclic temp file,
so if the size of get request from the client downstream is
large enough the temp file might overflow as well. In which
case it just doesn’t read the data from the upstream socket

buffer unless the downstream socket buffer is writable. This
hurts the download time at the client end. We changed the
Nginx code to use a cyclic temp file and the epoll event for
sendfile is added to know when it is safe to reuse a portion
of the cyclic file. In our case it is much more unlikely that
there is no space left in the file, hence the download time for
large files get better. We also verified that, if you use a cyclic
buffer without adding the events, the file you receive at the
client end is different from the file at the server end. This diff
easily arises for large files, for instance a 4GB download with
1MB as the size of temp file, always gives the race condition
when run on the host-only network(which gives a measured
link speed of around 50MBPS), and this is with our custom
non-blocking sendfile implementation as discussed in section
II-A2. The added benefit of non-blocking implementation as
we discussed is that the server is expected to return from
the request handling quickly. Given that the major motivation
behind the design of Nginx was to solve the C10K problem
[4], this is expected to be a good optimization for increasing
the capacity to handle more clients.

We compare our approach to the actual Nginx implemen-
tation, and find that we perform considerably better of large
files. The comparison was done against the standard Nginx,
with caching disabled(because in case of caching there is
no point of having a a temp file), and was running on the
undisturbed linux kernel. Apart from caching no other changes
were made for benchmarking. As we discussed the temp file is
not cyclic, hence the performance starts getting affected when
the temp file overflows. In the customized implementation we
used the epoll event to avoid the race condition and used a
temp file as small as 1MB, also we had our custom kernel
with non-blocking sendfile calls. The size 1MB for temp file
was enough to get the desired speed up with cyclic temp file.
There were a few cyclic temp file specific optimizations which
we performed, firstly we changed the IOVS(the unit of data
which is sent and received on each I/O) is increased from 8KB
to 100KB, secondly we did a minor code modification to be
able to use the temp file more vigorously. Although we verified
that Nginx was not any faster with these modifications. As the
fig 4 suggests the speed up in download times is considerable
for any response which has size greater than a GB, mainly
because of the overflow of temp file. Although we didn’t
actually measured what are the most important factors leading
to speedup, apparently the non-blocking part is crucial to the
speed-up. With non-blocking sendfile implementation although
the probability of race condition becomes considerably large,
which means the support we have added to kernel is much
more useful this way. Another important benefit which we
get using this approach is the disk pressure decreases heavily,
i.e. from a GB to a MB of temporary file size. This might
not be considered a significant gain in many cases, but with
widespread use of flash disks this cost of disk storage is also
something that might matter.

C. Lighttpd Benchmark

Another optimization that is possible with using this ap-
proach is to have a portion of memory-mapped file act as a
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Fig. 4. The variation of download times at client, with increase in file size for
both modified Nginx and unmodified Nginx implementations. The comparison
is made for when Nginx is set to act as an http proxy. The unmodified Nginx
implementation is the untouched versin of Nginx, which runs on unmodified
kernel. The modified version uses a cyclic temp file of size 1MB with sendfile
enabled, race conditions discussed in section II-A1 are handled using our epoll
implementation.

Fig. 5. The variation of download times of response of the modified lighttpd
fastcgi module with the variation in size of mmaped temp file.

buffer for the efficient zero copy. We modified the lighttpd
server to have a set of files which it memory-maps on initializa-
tion and uses to buffer the response of the cgi module. As there
is no direct way to do a zero copy send to socket in linux this
approach is sometimes beneficial. Conceptually this seems like
really good optimization, but the copy cost is really not very
significant for small chunks and with large chunk copies we
might sometimes get into other issues. We used the download
time here as well as the performance metric. We just modified
lighttpd to use the above stated buffering scheme with the
fastcgi module, we noticed that the speedup is considerable
when the size of each unit chunk from cgi module is in a
certain range. The problem with small chunks is, it the gain
due to copy overhead is overshadowed by the extra-system
call overheads. In case of very large chunks, the pipeline starts
clogging, i.e. you have to wait for receiving a large chunk of
response from cgi before you can start transmitting it. The fig 5
shows the variation of response time of out custom approach
and the standard approach with the size of temp file that is

mmaped and used as buffer. We call sendfile when the response
completes or the temp file is full, hence this acts as the chunk
here. Although the question that whether it’s possible to go
around this clogging and have better buffering scheme with
zero copy, is still something which needs exploration.

D. Apache Benchmark

One set of programs that we thought might also benefit
from our changes to sendfile() is web servers. Apache is a web
server which is often used to serve templates created by php.
Templates gain several advantages from our enhancements
to sendfile(). Since templates are only partially dynamic by
nature, and our API allows the programmer to determine how
many bytes in a file have been sent, a server can begin to reuse
memory earlier.
We compared Apache to a custom program which used our
sendfile to increase performance. It utilizes the zero-copy
behavior of sendfile to reduce time spent copying data. In ad-
dition, knowledge of which parts of the template are dynamic
allows our program to begin to write over data before we are
completely finished sending the file.
In our experiments, we were able to see a noticeable gain
for larger templates: for one gigabyte templates, our custom
program using sendfile was able to complete the transfer in 10
seconds, while apache took about 14 seconds. However, most
templates on the web are orders of magnitude smaller than one
gigabyte. Because all of the gain of zero-copy calls is actually
in the copying, the gains seen really only apply to larger files.
We concluded that our modified sendfile does not actually
provide gains for real-world web templates. Programmability
gains will be seen for the servers, due to the non-blocking
nature of the sendfile call. Note that while Apache does use
sendfile currently, its slowdown is due to the fact that it cannot
reuse memory because of the current limitations of sendfile
discussed earlier.

IV. FUTURE WORK

Due to the relatively sparse research until now, there are
many unexplored avenues remaining in this area.
From an experimentation standpoint, we would like to extend
our work into real world networks in order to evaluate real
machines. We would also like to further explore the effects
that an implementation of sendfile which blocks would have
on current servers and proxies.
We noticed strange behavior during our experimentation when
observing loopback connections. Even after all data has been
acknowledged by the receiver, the sender can still modify its
data and the receiver’s data will be modified as well, implying
that sendfile actually causes programs to share memory. We
discovered that the operating system uses a pipe over the
loopback interface, leading to a problem in implementation.
A question is raised here as to whether it is more important
for the loopback interface to behave as a normal interface, or
if the speed of the loopback interface is more important.
From a more general perspective, sendfile() is a relatively
recent addition to the kernel, leaving several opportunities for
improvement. While our work has focused largely on linux,
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other operating systems may have different approaches, which
will have their own unique hurdles to jump. We also believe
that many parts of the linux networking stack have remained
largely untouched by the research community due to the
boundary between operating systems and networking research,
leaving many more areas into which we could expand.

V. CONCLUSIONS

We have demonstrated that some modifications to the ex-
isting sendfile interface will allow applications to use it more
effectively. The use of epoll interface in our work made it
relatively easy to incorporate this in the existing event based
web proxies and servers for linux, moreover the programs
which don’t want to use our additions can run unmodified.
We demonstrate the performance improvements in terms of
download times, with the help of several optimization which
become possible by our additional support in kernel. Another
aspect which we gain on is a large reduction in disk pressure,
which might be important with introduction of relatively costly
SSDs. We have summarized our future work in previous
section, as our finals words we would like to emphasize that
the networking stack of OS might have scope for several such
useful modifications.
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